Black Hole Astrophysics
Chapters 9.3

All figures extracted from online sources of from the textbook.



Part I Equation of state

Pressure and Internal energy of various types
of gases (Ch 9.3.1~9.3.2)



Introduction

To this stage, we have presented all the conservation laws that would be needed to
calculate how plasma behave in a general gravitational field.

pc? H g Q5 Q Qs
(TO‘B) = g —21y,g27" = $40 +py — 270,427 =21y, g2
gas Qy T2, —4Mv,g 8% o SugP HPy] e 741114 9. Fie
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Q5 = 1Kc(c*P*BVsT + TUPV,UY)

However, we see above that there are lots of quantities that we don’t know yet -
For gases: € Pg K¢ Ny,g $u g (energy density, pressure, thermal conductivity,

viscosity coefficients)
For radiation: Exiln Koo 1 Cpr

Therefore, what we do next is to relate them to density p and temperature T, and in
some cases, plasma composition.



Composition of gases

Since the most abundant elements in the universe are Hydrogen and Helium, we
usually express the composition of a gas in terms of mass fraction of the elements

X for Hydrogen
Y for Helium
Z for anything heavier (often called “metals”)

Unless the gas is exotic (ex electron-positron), the mass fractions sum to 1.

X+Y+7=1 Solar System Compositien by Mass

Metals
2%

x|y |z e
28%
Solar Abundance 0.71 0.27 0.02

Early Universe 0.75 025 4x10°1°

Hytdrogen
10%



The general distribution function for
Thermal gases (9.3.1)

According to statistical mechanics, we can find that gases are distributed in momentum
according to (the particle density per unit momentum)

dn g, 41tp?

dp h3 eE®)—tchem)/KT +1

e(p) = \/pzcz + myc* particle energy;
h = 6.62607 X 107%’erg - s Plank’ constant

Uchem Chemical potential;
g degeneracy factor

+1 is for Fermions, half-spin particles (e e*p*nv,...)
—1 is for Bosons, integer spin particles (yW*Z°..))

100 K Classical Maxwellian

tt tit t
FERMIONS inz172 312,50, ...

BOSONS

Unified Electroweak spin = 1

force carriers
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Strong (color) spin =1
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GeV/c2  charge hame GeV/c2  charge

Color Charge p muon <0.0002 0
Each quark carries one of three types of M neutrino
“strong charge,” also called “color charge.”

These charges have nothing to do with the M muon
colors of visible light. There are eight possible
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Mumber of particles

Determining Energy and Momentum
from the distribution function

. oo : LS o 4mp?
Since the distribution function 5. T 1B e e Yo

particles (per unit volume) are contained within a momentum interval,

tells us how many

The total kinetic energy is simply to sum over that of each momentum interval

dni
& = jEK(P)d—pdp

And the pressure, being momentum

i flux as we discussed last week, is

Classical Maxwellian

100 K
i 1 dni d
Pi = 3 p\v dp p

Particle flux

speed



Non-Relativistic Ideal Gas: Tenuous,
Warm Fermions (Ch9.3.1.1)

For fermions at not too high a density, the chemical potential is very negative.
And for non-relativistic gases, ¢ ® myc? + g >> kT

Thus, the distribution function reduces to
dn _Ys 4Ttp3 8
dp = h3 eE®)-kchem)/KT 4+ 1~ K3

2
81 el
, ) = e(uchem—mocz)/ksze ZmokT

€K
e (uChem_mOCZ)/kTp e _ﬁ

Maxwellian Distribution 2 Evaluating the internal energy and pressure,

p2e  2moKT we find the very familiar formulas:

/ N\ 3
/ \ i El’lkT
/ »g = nkT

: The adiabatic index I' = g

: ), 3
0.05 ;/f . 0 The pOlytrOplc indexn = E

03 0 = 2. 20 4 Specific heats €, = ER C, = ER



Pressure for different non-relativistic
ideal gas compositions

pkT u is the mean molecular weight,
Pg = nkT = — : :
U expressed in units of grams per mole
Neutral Hydrogen Gas 1

Fully lonized hydrogen gas 0.5

General Composition Neutral Gas 1
X + 0.25Y + 0.06Z
General Composition Fully lonized 1 0.61
Gas 2X + 0.75Y + 0.56Z pg = 1.63pkT

Simple explanation for mean molecular weight:
Mtotal Mtot 1

Ny + Nye + Nyetal 4 Mot - X + Mioy - Y/4 + Mpetal Z/mmetal X +0.25Y + Z/mmetal

M:

Mgt X = My = Ny - 1; Mot Y = Mye = Nye * 45 Miot - Z = Mipetal = Nmetal * Mmetal



Relativistic Ideal Gas: Tenuous, Hot
Fermions (Ch9.3.1.2)

dn  gs 41ip3 _8m

(#chem—moc?)/KT k
dp h3 eE@—#tchem)/KT 4 1 i - p“e KT

Since for general situations, the kinetic energy is ex = /(myc?)2 + (pc)? — mqc?

This changes the distribution to

dn 87‘[ V(moc?)2+(pc)?—myc?
il (Iichem mocC )/ksze KT
dp
General Maxwellian
dn
dp _
mufI \/m2+p2_m m__loo

2 e -
-~ ’ \

/ Classical Maxwellian

[0E

Shape of cut-off is

/ affected by the mass

0.1F

LIKT]

0.1



The highly relativistic case
When the kinetic energy is much greater than the rest mass energy;, it is
mainly dominated by the pc term.

dn 8w

pc
Fi g gt e(ﬂchem_mocz)/kT Ze_ KT
dp _ h3 P
Evaluating the internal energy and pressure, we find the very familiar formulas

g = 3nkT p, = nkT

General Maxwellian

m=100 The adiabatic index I' =
T RN

10E

3
| The polytropic indexn = 3
, Specific heats C, = 4R C, = 3R

1NN

As we would expect, this will turn out
[LX1)]

to be very much the same as photons
since photons have rest mass and
'. their energies are only Kinetic.
0.1 I 1.0 3

5.0 10,0



Photon Gas: Hot Bosons (Ch 9.3.1.3)

Taking the distribution for photons and using the fact that ex = € = pc = hv and

gs = 2 for two polarization states
dn g

41tp

2

8

p

2

dp 73 eC®)—Henem)/KT — 1 3 gPc/KT _ |

If we look at the spectral energy distribution, we see that it should be very familiar

dn 8mhv v
E ==
dv.  ¢3 ehv/kT 1
It is simply the Plankian SED !
Wavelength {cmn)
— 300 30 3 0.3 0.03
mN 10—14 T T T T
As for the intensity, T 108k . _
c dn 2hv v? NI ]
(V) =—e— = 2 g 1070F . e B
41 dV C th/kT -1 \U\ 10717 /f/ _
= B, (T) @ ;
% 10718 %
”‘E)“ —1% 7 . _
This is also the out familiar formof > *° :/  CopEFtas
the Plank function that describes g 107 -
the intensity per unit frequency. g 107 — e
0.1 1 10 100 1000

(Black Body Distribution)

Frequency (GHz)



Energy and Pressure for a Photon
gas

Evaluating the internal energy and pressure, we find:
& =3p, =aT*
a= 756577 x 107 erg - cm 3K ~*
This gives:
4

The adiabatic index I' = 3

The polytropic indexn = 3
Specific heats €, = 4R C, = 3R

Which is the same as a relativistic Fermion gas.



Denerate Gas: Dense Fermions
(Ch9.3.1.4)

Previously, we have discussed cases where the chemical potential is very negative
and therefore causes the exponential term to be much larger than 1.

dn g 41ip?

dp = h3 e(g(p)_ﬂchem)/kT +1

However, when the density of Fermions, for example, becomes so high that the
Pauli Exclusion Principle can’t be neglected, then the ‘1’ in the denominator
becomes important.

[PAULI EXCLUSION PRINCIFLEJ

dn 8m p?
dp h3 eE@—#chem)/KT 4 1
- -
| Shucks, all
\ out of room
dn 8w > gx + moc? P
S \/eKz + 2egmgcC 5
dSK h°c EK+tMoC“—Uchem

e KT +1




How to define “degenerate”?

In our introduction to degenerate gases, we noted that for dense fermions, the +1
must be considered.
[t should then be obvious that the exponential term can’t be too large.

dn  8m ex + myc?

e

2
' : “« : ) 3 —mgyC
To be more precise, we can define a “Fermi Temperature” Tr = —lf =g Chemk -

EK—EF
The exponential then becomes e kT .

Now, we see that it is clear that there are two cases:
1. ¢ > €r : The exponential term is large, we have a non-degenerate gas.

2. g K ¢p - The exponential term is small. A degenerate gas.
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Pressure and Energy

Evaluating the pressure and energy, we get:

3
=% (B merp) o=

With the normalized energy and pressure functions:

(

mgpC
h

3
) moc?E(x)

P(x) = x(2x% — 3)v/x2 + 1 + 3sinh™x
E(x) = 3x(2x% + 1)v/x2 + 1 — 8x3 — 3sinh~1x

energy to pressure ratio

Polytropic index

Relativistic
gas
n=3

' : : — X
1 10 100 1000

AdiabaticIndex I’

Relativistic

gas

I =

4
3
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Some handy numbers

Handy expressions for the pressure for a degenerate electron gas are, for the non-
relativistic and relativistic cases,

5/3
pexr = 1.00 x 10" dyn cm ™2 (_)

= |
o~
\.___../
i
K“"-ﬁ
w

Per = 1.24 x 10'"® dyncm 2 (p

and for a degenerate neutron gas

—2 5/
panNr = 5.50 x 10 dyncm p“’”

por = 1.24 x 10" dyncm =2 p*/?

with p and p in cgs units, and the standard € = p/(I' — 1) giving the internal
energy density for each. Note the similarity between the two different
degenerate gases in the relativistic cases.

The boundaries between the non-relativistic and relativistic cases are
approximately

1.9 X 10%g - cm™3 for the degenerate electron gas and

1.15 X 101¢g - cm™3 for degenerate neutrons.



Different Thermal Particle Distribution:

log dn/dEk

log Kinetic Enerqy



log T (K)

13

12

11

10

Rel, Non-Rel e~ Rel, Non-Rel n

log n (cm'3) Usually happens in unstable stars
(Collapsing)

i 1.9 x 10°g - cm™3 1.15 x 10%%g - cm™3
log p (g cm™)
-15 -10 -5 0 5 10 15
| | | | | |
1C ADAFS |DISKS STARS NS |.
- T o~ . . 4
3 G 2 2 Radiation Pressure
2= 2=
. © o W - Pr 3
2 o D -
T < | =
8 I () s 8
L CE - =125
5 8 S =
- 5 hm ~— Lo’ Non'Rel -1 1 (2
o n Degenerate ~
Ly o = neutron -4 g
c
= zZ
— Q a -1
on-Rel . Relativistic
Degenerates Degenerate
- g. e Y
electror< ' | electron
&
1 X<
l l 1 l a -3
10 15 20 25 30 35 40



Nonthermal gases (Ch 9.3.2)
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Possibly due to
Fermi acceleration
in the universe,
many sources
exhibit a powerlaw
spectrum in the
high energy end.
The Crab Nebula is
given as an
example to the left.
(Radio lobes, jets
often also show
this behavior)

This is usually called non-thermal since particles that emit this radiation must have
energies way higher than the thermal value ‘kT’. Lorentz factors can go even up to 10°

or higher.



Power law spectra
For such cases, it is common to assume that the particles distribute in energy as a

power law shape:
HIC e yllda Pos Hicd
deg 81—[)’ pam st K

K,Max gK,min
normalization
Which energies g nin < &g < € Max

Power Law spectra illustratior

If B > 1, then the distribution function is dn.
steep and dominated by low-energy ‘:*""’
particles, perhaps even a very low-

energy thermal distribution. On the other “'
hand, 0.01+

0.001

If B < 1, then the distribution is shallow,
dominated by the high-energy end, and 0
must be cut off more steeply beyond 05l

SK,Max-




Energy and Pressure for non-
thermal particles

Evaluating the energy and pressure for non-thermal particles, we find that

2-p 2-p

£=3p=n (1 TE ﬁ) €k Max — €K min
g Fo. i 1-B 1-8
e €k Max ~ €k min

This gives a Adiabatic Index I' = g, same as for highly relativistic particles. (This

should be trivial since by origin, they are highly relativistic)



Part Il Equation of state

Conductivity and Viscosity (Ch9.3.3~9.3.7)



Thermal Conductivity (Ch9.3.3)



Recall From last week

With the knowledge that @ V T and that roo Energy TOJﬂ
: density Energy flux
it corresponds to the T'%and T terms, we could dof =
guess that in locally flat space-time, the 5 DR Tl
<
components would read as \ @%@ ety liux
X y z ¥
05 0 il 02 \

Q%2 Q110 IR0
Chobhi () TR
0z 032 0:2 0

(TaB)Conduction &

However, we can see that Q, is actually still a 3-vector and the above form is simply
from an educated guess. Therefore we need to first rewrite Q, into a 4-vector Qg.

We find that it can be expressed as

Qg ZPO(BV[;T =1 TUBVﬁUa) with PP = C—12UaU.B + gOCB



A simple Kinetic picture

Consider a picture like the one on the left.

If we consider that a pair of particles are
exchanged, then there will be a net energy
transfer from top to bottom.

Therefore we can write heat flux as
(particle number flux) X (energy difference)

For a thermal gas, the energy that is
T low required to heat it by AT is AE = C,AT.

; . % : dT
In terms of differential quantities, we can write AT = £, o=

Putting it all together, we get Q ~ — %n(Vc)Cvfc %-
Comparing with Q = —K, V T, we find the diffusion coefficient K, ~ — % (Cyn)(V.)L,
Q1.Why is £, the mean free path?

Q2.Why is it Cy,?
http://en.wikipedia.org/wiki/Thermal_conductivity



http://en.wikipedia.org/wiki/Thermal_conductivity

Thermal Conductivity

As we have just found, the thermal condutivity is equal to K, = % (nCy)(V. )4,

For thermal conduction in a electron-ion plasma, it would be sufficient to only

consider electrons since they are fast.

. 3
For a classical thermal gas, nCy, = Enek

3kT
Mme

The rms velocity is (V) =

The mean free path, by definition
is the inverse of the density

multiplied by the collision cross-
d

section. £, = =
evc

Collision area i1s o,

O dx unit area
N

e,

Total number of Total area covered is o-ng dx
molecules is ng dx



Determining the mean free path

1 The easiest was to estimate the collision cross-
neoc  section is to give it a radius, thus, o, = T[I‘CZ

The mean free path £, =

Therefore the actual problem is to find some reasonable radius to apply into the
formula. (This was actually already discussed in Ch1 of plasma Astrophys.)

My own idea is like this: Since the mean free path is the distance of which a
particle travels before crashing into something and thereby changing direction of
motion, the cross-section associated with it would be defined by some radius
within which the injected particle would be deflected by a large angle. (red oval

below)
N

4

N

=

parameter

http://en.wikipedia.org/wiki/Coulomb_collis



http://en.wikipedia.org/wiki/Coulomb_collision
http://en.wikipedia.org/wiki/Coulomb_collision

Determining the mean free path

For coulomb collisions, if the particle looses
most of its initial kinetic energy to the
coulomb field, then it now no longer knows
which direction it came from.

electron

3 \\,\”‘
N

"0t Y . ) .
s \ The radial coulomb field then changes its
direction according to how close the particle is.

Thus, we can approximate the radius by equating the thermal kinetic energy and
the Coulomb potential energy.

This then give us a classical Coulomb collision radius

Tc=ﬁ
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Putting it all together

The thermal conductivity K, = %(Cvn)(VC)fC
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How important is it?

Let’s now estimate the importance of heat flux relative to energy flux by advection
from neighboring fluid elements. (Advection is from the T - V term)

Heat conduction flux o Qg [Vl f.

Advection energy flux Ve “lVv]R
Becomes close

R is the typical length scale of system. For accreting BH, it is ~(10 — 100)rg.

Casel: Main Sequence stars:
Since MS stars are in approximately in hydrostatic equilibrium, the velocity of

fluid elements V will be much smaller than (I/.) the thermal velocity.
Thus, in MS stars, heat conduction is more important.

Case2: Accreting BHs:
: : {k
In such cases, V, the infall velocity, can reach the sound speed <CS = \/% ~ m—T>
p

Q _ [mp xT)? _10( Ne )‘1 M \' (R _1( T )2
ve me me4ngR  \5.3x1018cm—3 10M¢ 107y 4.x10°K




s

KA5EXD

ol
\//

Q, |m, (KT)? _10( n, )—1 M \""/R ‘1< T )2
Ve |m, me*n,R~ " \53 x108cm-3 10Mg 107 4.x 10°K

So, conduction may be more important than advection of the thermal gas for an
accreting 10 M, black hole if n, < 10'® cm ™3, and for a 10° M, black hole if
ne < 1019 em—3. Generally, however, in accretion situations conduction is much
less important than radiative transport, so the former often can be ignored, unless
the accretion flow is radiatively inefficient.



Particle Viscosity (Ch9.3.4)



Recall From last week

tensional stress

compressional stress

Since viscosity works to transport momentum, it
should manifest itself in the momentum flux term of
the tensor.

’
700 Energy -
density Energy flux shear stress
TocB A
Ti0 e{\&@ Tii
@0\6\4\’@ Momentum flux
e

I'm not so familiar with this part so below mainly follows the textbook.

TaBViscosity = _27717,‘920(B T gv,gQPOLB
shear bulk

Shear viscosity coefficient
Nv.g = Nv,g (p,T)

Projection tensor P*F = iz Ueub + gob
Cc

Bulk viscosity coefficient
Shear tensor X%P = %[P“VVVUE + PBVV),U“] — %OPO‘B Cvg = Svg (p,T)

Compression rate @ = V,UY



A simple Kinetic picture

Consider a picture like the one on the left.
o:/ p
—
W ./.’//A If we consider that a pair of particles are
el exchanged, then there will be a net
momentum transfer from top to bottom.
AP
o> :H — o Therefore we can write momentum flux as
> & g, (particle number flux) X (momentum difference)
o o7
In terms of differential quantities, we can write AP = £,m Z—\ZI
=3y dv
Putting it all together, we get Jp =p(V},)Z,, =
Comparing with T“BViSCOSity S —Zr)v,gZ“B - (v,g@P“B, we find the viscosity coefficients

Nvg = Cv,g z,0<Vv>€v

10.1098/rstl.1866.0013



http://dx.doi.org/10.1098/rstl.1866.0013

The coefficients of viscosity

The coefficients of viscosity n,, ; = {;, 4 =p(W,)¥,, look very familiar to the thermal
conductivity K, = %(Cvn)(VC){’C.

However, in case of momentum, for an electron-proton
plasma, the momentum is mainly carried by the protons.
Thus, both (V;,) and £, have to use values for protons.
<£v LA G e mp (KT)? )

npoc pme?

(kT)? -;71..1,;/;) T (,\4

Typo in textbook?

Thus, for e " p* plasma,

3
2

1 5 s
Nyg = E 3mp(kT)2 ~ 3.X 109erg +s-cm”3 (m)



How important is it?

Comparing the contribution of viscosity to pressure, we get the following equation

ER e 2 el (KT)?
D nkT me4nR

_10( n )‘1 M \" (R _1( T )2
T A3.7%1017cm 3 10Mg 107y 4.x10%K

R

Q _ [my x1)? _10( e )—1 M \ ' (R _1( T )2
ve me me*neR \5.3x1018cm3 10M¢ 107y 4.X10°K

There is an interesting thing here, when we compare with the ratio of heat flux to
advection energy transfer, we find that for viscosity to dominate pressure requires
even lower pressure than for heat conduction to dominate advection!

Nevertheless, in low accretion rate situations, it is possible that particle viscosity
may be important as well.



Turbulent Viscosity (Ch9.3.5)



TafMef ], 5 A &l XD

Turbulence is the random, chaotic, motion that often occurs in in fluids on scales
much smaller than the overall system size, but much larger than the distance
between independent fluid particles or even between fluid elements. The
phenomenon usually develops in fluids undergoing shear flow, unless the
microscopic viscosity is strong enough to damp out any growing chaotic motions
and turn them into heat. It also can occur in fluids that have a weak, but non-zero,
magnetic field. Turbulence actually is produced by fluid motions and is not really a
separate physical microscopic process. However, the motions are so complex,
compared to regular laminar flow that statistical methods have been developed to
treat chaotic fluid motions, just as such methods were developed to handle the
mechanics of multiple particles in motion in the first place.

If the size scale of the turbulent eddies #; is much smaller than the overall size
of the system, then one can use the turbulent diffusion approximation to define a
turbulent viscosity

Nyt = Gyt = p(Ve)ty

where (V) is the RMS velocity of the chaotic motions in the eddies.



Ta]Maf ], B A EFIXD

In the early 1970s the nature of turbulent flow in black hole accretion flows was
largely unknown. So early investigators [351, 352] assumed that the RMS turbulent
velocity was a fraction of the sound speed

(V) = acg
where the free parameter a < 1. This “alpha model” of turbulence was quite
successful in the early days of black hole accretion studies. See Chapter 12.

In addition to the obvious issues associated with choosing a diffusion approximation,
treating turbulence as a viscous process has some other assumptions associated with
it. Recall (Section 9.2.1) that having a viscosity implies that viscous dissipation of the
shear exists (viscous heating). This is because the viscous part of the stress-energy
tensor does not have its own energy density (€ t is missing). In reality, however,
turbulence does have an energy density, a pressure also, and heat flow as well, not
just viscous-like properties. All of this physics is missing in this treatment, along with
a model for how to convert turbulent energy into heat. Instead, the simple viscous
approximation assumes that all mechanical energy lost due to viscosity immediately
is converted into heat (equation (9.16)). While this works rather well in accretion
models, it still should be remembered that turbulence can be much more complex
than a simple ad hoc viscosity.



Radiative Opacity (Ch9.3.6)



Recall from last week

In many situations that we will study in the next few chapters, the fluid will be
optically thick to radiation and both will be in thermodynamic equilibrium at
the same temperature T, = T, = T.

In this case the photon gas will contribute to the fluid plasma pressure, energy
density, heat conduction, and viscosity and will add stress-energy terms
similar to those discussed previously for fluids.

pe® + &g 9 U Qg
(Fetitii= Qg —2Myg 2™ = $pg0 + g —21y,g 2% —21y,g 2™
gas Q_g =27y, 27X —21y,g 27 = 000 + Dy =21y g 2"
Qg L — 20y, g 2% — 2Ny, g2 = $y g0 + pg
P = Pg Total density of fluid (photons don’t contribute to this)
P =Dy +Dr Total pressure
E=¢&;+ & Total energy density

Q% = Q;“ + Q" Total heat conduction vector

Ny =Nyg + Ny,  Total coefficient of shear viscosity

(v = Cpg + Gy  Total coefficient of bulk viscosity



Conduction by radiation

Last week, we mentioned that for radiation, we can basically copy the whole set of
stress-energy tensor, therefore, for the heat conduction term, Q¢ = Qg“ + Q,.“.

Thus, we can determine the total conductivity K = K, + K,..
Then, by analogy of K. = %(Cvn)(Vc)fc,

4acT3 1
3 ka

1 1
K, = § (ncv)<Vr>€r T § (4aT3)C€T =

1 1 : : 1. ; .
ey £,., a is the absorption coefficient. From illustration below, we can see that

PKR
it should be inverse proportional to the mean free path of photons.

Incident Intensity I,,(0) Output Intensity I,,(x) = e~ %L

For details, please see Radiative Processes in Astrophysics by Rybicki & Lightman



Frequency dependent Opacity

Using the relations £, = % i pkl(v) 38 nal(v)
R T

We can rewrite the opacity in terms of scattering/absorption coefficient

] S
p u

There are many ways to scatter/absorb photons. Therefore in the following we will
consider

a. Electron scattering
b. Free-Free and Bound-Free Absorption



Electron scattering (Ch9.3.6.1)



General considerations

Considering scattering between photons and electrons, we recall from high school that
the most general case for scattering is Compton scattering.

Electron
X-ray Photon In such a case, the cross section
ANNNNNNN we need to consider is the Klein-

VVVVVVVV P Nishina cross-section ogy.
Scattered
Photon

. ]} | N 5T .

Using the relation ki (v) = na;(v) = 0,(v) TA and applying it to electron scattering, we

Na(1+X)

find kr (V) = gy (V) :

3 {2(1 +6,) 1+6, n(1+26,) .4 #n(1 + 26,) 1+ 30, }
4

oxn(V) =~ or 62 .. 11420, 20, 26,  (1+26,)?

hv : ; .
= ~ is the energy of the photon in electron rest mass units
Mmec?  5.9%X10°K

=
op = S?n (me Cz) = 6.65246 x 1072°cm? is the Thomson cross-section
e




The Klein-Nishina Cross-Section

3 21+6,) 1+6, +n(1+26,)| ¥n(1+26,) 1+ 36,
oxn(V) = ~or 2 =t + — 5
4 0; 1+ 26, 20, 20, (1+26,)

K lein=Nishina Cross Section

(T Lnits

| In this region,

F the cross-section
 essentially is the  Compton Scattering
| classical one region.

- since photons

- have low energy.  On the other hand, if

the electrons are very
g Hes = energetic, inverse
+0.2(1 + X)cm?g~! = C 1
0.34cm?g~1 for solar ompton can also
10~ Fabundance happen.

The cross-section
is very small,
other forms of
opacity dominate,
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Absorption processes (Ch9.3.6.2)



Free-Free Absorption -
an Introduction

If a photon and an unbound
electron collide near a positively
charged ion, it is possible for the

s S photon to be absorbed, rather
— VL= G than simply scattered. This
~ process is called free-free
S absorption. The electron’s kinetic
® ® / ® energy increases, and, when it

eventually collides with another
electron or ion, that extra energy

will heat the plasma.

Only much later may the inverse process (Bremsstrahlung emission), Section 9.4.1, or
some other process, emit a photon again and convert that absorbed energy back into
radiation. Photo-absorption and photo-emission, therefore, are treated as separate
heating and cooling processes, rather than two parts of a single scattering.




Bound-Free Absorption -
an Introduction

\

+®

A similar effect occurs if
the electron is bound to a
nucleus, but the incoming
photon has enough energy
to eject the electron from
that nucleus and ionize it.
The photon again is
absorbed in the event, so
this process is called
bound-free absorption.

The inverse process, recombination emission, also occurs separately from bound-free
absorption, and need not involve the electron and ion that participated in the original

lonization.




The opacities

Because free-free and bound-free are very important in stellar structure, their
Rosseland means have been worked out and well known.

Kree = 7.36 X 1022cm?g =1 (X + Y)pT~7/2 gee/ e
Mainly dominated by H, and He

Kbt = 8.68 X 102°cm?g = (T)ZpT~"/2 gpe/

Mainly dominated by heavy elements

g_ff and g;f are called the Gaunt factors which are generally a factor of unity.

f(T) is the fraction of heavy elements that are not ionized f(T) > 0asT — oo

\
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e 4 e - @ ® @
“ 2




Total Opacity

The total opacity due to both processes is, ignoring the Gaunt factors,
Fra+ Rrpr ~ 3.68 x 102 em?g ' [X +Y + 1180 Zf(T)] (1 + X) pT~7/?

or

Fra + Frot ~ 1.55x 10% em? g™ pT7/2 (9.81)

for solar abundances and f(7") ~ 1.

Again, I am too lazy to
type these equations...




Radiative Heat Transport v.s.
Thermal Conduction (Ch9.3.7)

Now that we have discussed both thermal conduction and radiative heat
transport, it would be interesting to see in what cases which dominate.

By taking the ratio
Qg _ Kc _  4cT?

= = 5 —
Qr N a_;(Vc)chRP

Because the opacity can be either electron scattering or absorption, we must test both
cases. They give, respectively, the following criteria for radiative heat transport to
dominate over conduction

T 1/2
n < 6.4 x 1(]30 CIH_S (1)(]09]:{) .-"_iR = Kes
T 2
n<4.1x 103 em™3 (,IX]OQK) KR = KR ff + KR bf

Either way, these are enormous densities — much greater than the central density
of the sun or other main sequence stars and approaching white dwarf densities. So,
for nearly all the applications of black hole accretion that we will encounter in this
book, radiation will dominate conduction, and we can ignore the latter.
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