
Black Hole Astrophysics 
Chapters 9.3 

All figures extracted from online sources of from the textbook. 



Part I Equation of state  
 

Pressure and Internal energy of various types 
of gases (Ch 9.3.1~9.3.2) 



Introduction 
To this stage, we have presented all the conservation laws that would be needed to 
calculate how plasma behave in a general gravitational field. 

However, we see above that there are lots of quantities that we don’t know yet – 
For gases:  𝜀𝑔 𝑝𝑔 𝐾𝑐  𝜂𝑣,𝑔 𝜁𝑣,𝑔 (energy density, pressure, thermal conductivity, 

                   viscosity coefficients) 
For radiation:  𝜀𝑟  𝑝𝑟 𝐾𝑟 𝜂𝑣,𝑟 𝜁𝑣,𝑟  

 
Therefore, what we do next is to relate them to density ρ and temperature T, and in 
some cases, plasma composition. 

𝑇αβ
gas

=

ρc2 + 𝜀𝑔 𝑄𝑔
𝑥 𝑄𝑔

𝑦
𝑄𝑔

𝑧

𝑄𝑔
𝑥 −2 𝜂𝑣,𝑔 𝛴

xx − 𝜁𝑣,𝑔 𝛩 + 𝑝𝑔 −2 𝜂𝑣,𝑔 𝛴
xy −2 𝜂𝑣,𝑔 𝛴

xz

𝑄𝑔
𝑦

−2 𝜂𝑣,𝑔 𝛴
yx −2 𝜂𝑣,𝑔 𝛴

yy − 𝜁𝑣,𝑔 𝛩 + 𝑝𝑔 −2 𝜂𝑣,𝑔 𝛴
yz

𝑄𝑔
𝑧 −2 𝜂𝑣,𝑔 𝛴

zx −2 𝜂𝑣,𝑔 𝛴
zy −2 𝜂𝑣,𝑔 𝛴

zz − 𝜁𝑣,𝑔 𝛩 + 𝑝𝑔

 

𝑄𝑔
𝛼 = −𝐾𝑐  𝑐

2 𝑃αβ 𝛻𝛽𝑇 + 𝑇 𝑈𝛽  𝛻𝛽𝑈𝛼  



Composition of gases 

X Y Z 

Solar Abundance 0.71 0.27 0.02 

Early Universe 0.75 0.25 4 × 10−10 

Since the most abundant elements in the universe are Hydrogen and Helium, we 
usually express the composition of a gas in terms of mass fraction of the elements 
 
X  for Hydrogen 
Y for Helium 
Z  for anything heavier (often called “metals”) 
 
Unless the gas is exotic (ex electron-positron), the mass fractions sum to 1. 
 

X+Y+Z=1 



The general distribution function for 
Thermal gases (9.3.1) 

According to statistical mechanics, we can find that gases are distributed in momentum 
according to (the particle density per unit momentum) 

dn

dp
=

𝑔𝑠

ℎ3  
4 πp2

ⅇ 𝜀 𝑝 −𝜇chem kT ± 1
 

 

 𝜀 𝑝 = 𝑝2 𝑐2 + 𝑚0 𝑐
4 particle energy;  𝜇chem chemical potential; 

 ℎ = 6.62607 × 10−27 erg · 𝑠  Plank’ constant  𝑔𝑠 degeneracy factor 
 

Classical Maxwellian 

+1 is for Fermions, half-spin particles (ⅇ− ⅇ+ 𝑝+ 𝑛  𝜈𝑒 . . .) 
−1 is for Bosons, integer spin particles (𝛾 𝑊± 𝑍0. . .) 



Determining Energy and Momentum 
from the distribution function 

Classical Maxwellian 

Since the distribution function 
dn

dp
=

𝑔𝑠

ℎ3  
4 πp2

𝑒 𝜀 𝑝 −𝜇chem kT ±1
 tells us how many 

particles (per unit volume) are contained within a momentum interval, 
 
The total kinetic energy is simply to sum over that of each momentum interval 

𝜀𝑖 =  𝜀𝐾 𝑝  
dn𝑖

dp
 dp 

And the pressure, being momentum 
flux as we discussed last week, is 

𝓅𝑖 =
1

3
  𝑝 𝑣 

dn𝑖

dp
 dp 

Particle flux 



Non-Relativistic Ideal Gas: Tenuous, 
Warm Fermions (Ch9.3.1.1) 

For fermions at not too high a density, the chemical potential is very negative. 
And for non-relativistic gases, 𝜀 ≈ 𝑚0 𝑐

2 + 𝜀𝐾 >> kT 

Thus, the distribution function reduces to  
dn

dp
=

𝑔𝑠

ℎ3  
4 πp3

ⅇ 𝜀 𝑝 −𝜇chem kT + 1
≈

8 𝜋

ℎ3  ⅇ 𝜇chem−𝑚0 𝑐
2 kT  𝑝2 ⅇ−

𝜀𝐾
kT

≈
8 𝜋

ℎ3  ⅇ 𝜇chem−𝑚0 𝑐
2 kT  𝑝2 ⅇ

−
𝑝2

2 𝑚0 kT 

 

𝑝2 ⅇ
−

𝑝2

2 𝑚0 kT 

Evaluating the internal energy and pressure, 
we find the very familiar formulas: 

𝜀𝑖 =
3

2
 nkT 

𝓅𝑔 = nkT 

The adiabatic index 𝛤 =
5

3
 

The polytropic index 𝑛 =
3

2
 

Specific heats 𝐶𝑝 =
5

2
 𝑅  𝐶𝑣 =

3

2
 𝑅 



Pressure for different non-relativistic 
ideal gas compositions 

𝓅𝑔 = nkT =
ρkT

𝜇
 

𝜇 is the mean molecular weight, 
expressed in units of grams per mole 

Gas Type 𝜇 𝜇(𝐒𝐨𝐥𝐚𝐫) 

Neutral Hydrogen Gas 1 

Fully Ionized hydrogen gas 0.5 

General Composition Neutral Gas 1

𝑋 + 0.25𝑌 + 0.06𝑍
 

General Composition Fully Ionized 
Gas 

1

2𝑋 + 0.75𝑌 + 0.56𝑍
 

 

0.61 
𝓅𝑔 = 1.63ρkT 

Simple explanation for mean molecular weight: 

𝜇 =
𝑀total

𝑁𝐻 + 𝑁He + 𝑁Metal
=

𝑀tot

𝑀tot · 𝑋 + 𝑀tot · 𝑌 4 + 𝑀metal · 𝑍 𝑚metal 
=

1

𝑋 + 0.25𝑌 + 𝑍 𝑚metal 
 

𝑀tot · 𝑋 = 𝑀𝐻 = 𝑁𝐻 · 1 ;  𝑀tot · 𝑌 = 𝑀He = 𝑁He · 4 ;𝑀tot · 𝑍 = 𝑀metal = 𝑁metal · 𝑚metal 



Relativistic Ideal Gas: Tenuous, Hot 
Fermions (Ch9.3.1.2) 

dn

dp
=

𝑔𝑠

ℎ3  
4 πp3

ⅇ 𝜀 𝑝 −𝜇chem kT ± 1
≈

8 𝜋

ℎ3  ⅇ 𝜇chem−𝑚0 𝑐
2 kT  𝑝2 ⅇ

−
𝜀𝐾
kT 

 

Since for general situations, the kinetic energy is  εK = m0 c
2 2 + pc 2 − m0 c

2 

This changes the distribution to  

dn

dp
=

8 𝜋

ℎ3  ⅇ 𝜇chem−𝑚0 𝑐
2 kT  𝑝2 ⅇ− 

𝑚0 𝑐
2 2+ pc 2−𝑚0 𝑐

2

 kT  

𝑝2ⅇ−
𝑚2+𝑝2−𝑚

𝑇  
m=100 

m=1 

m=0.0001 

Classical Maxwellian 

Shape of cut-off is 
affected by the mass 



The highly relativistic case 
When the kinetic energy is much greater than the rest mass energy, it is 
mainly dominated by the pc term. 
 

dn

dp
=

8 𝜋

ℎ3  ⅇ 𝜇chem−𝑚0 𝑐
2 kT  𝑝2 ⅇ− 

𝑝𝑐
 kT 

Evaluating the internal energy and pressure, we find the very familiar formulas: 
𝜀𝑖 = 3 nkT  𝓅𝑔 = nkT 

The adiabatic index 𝛤 =
4

3
 

The polytropic index 𝑛 = 3 
Specific heats 𝐶𝑝 = 4 𝑅  𝐶𝑣 = 3 𝑅 

As we would expect, this will turn out 
to be very much the same as photons 
since photons have rest mass and 
their energies are only kinetic. 

𝑝2ⅇ−
𝑚2+𝑝2−𝑚

𝑇  
m=100 

m=1 

m=0.0001 



Photon Gas: Hot Bosons (Ch 9.3.1.3) 
Taking the distribution for photons and using the fact that εK = ε = pc = hν and 
gs = 2 for two polarization states  

dn

dp
=

𝑔𝑠

ℎ3  
4 𝜋 𝑝2

ⅇ 𝜀 𝑝 −𝜇chem kT − 1
=

8 𝜋

ℎ3  
𝑝2

ⅇpc kT − 1
 

If we look at the spectral energy distribution, we see that it should be very familiar 

𝜀 
dn

dν
=

8 𝜋 hν

𝑐3  
𝜈2

ⅇhν kT − 1
 

It is simply the Plankian SED ! 

As for the intensity,  

𝐼 𝜈 =
𝑐

4 𝜋
 𝜀 
dn

dν
=

2 hν

𝑐2  
𝜈2

ⅇhν kT − 1
= 𝐵𝜈 𝑇  

 
This is also the out familiar form of 
the Plank function that describes 
the intensity per unit frequency. 
(Black Body Distribution) 



Energy and Pressure for a Photon 
gas 

Evaluating the internal energy and pressure, we find: 
 

𝜀𝑟 = 3 𝓅𝑔 = aT4 

 
a = 7.56577 × 10−15 erg · cm−3 𝐾−4 

This gives: 

The adiabatic index 𝛤 =
4

3
 

The polytropic index 𝑛 = 3 
Specific heats 𝐶𝑝 = 4 𝑅  𝐶𝑣 = 3 𝑅 

 
Which is the same as a relativistic Fermion gas. 



Denerate Gas: Dense Fermions 
(Ch9.3.1.4) 

Previously, we have discussed cases where the chemical potential is very negative 
and therefore causes the exponential term to be much larger than 1. 

dn

dp
=

𝑔𝑠

ℎ3  
4 πp2

ⅇ 𝜀 𝑝 −𝜇chem kT ± 1
 

 
However, when the density of Fermions, for example, becomes so high that the 
Pauli Exclusion Principle can’t be neglected, then the ‘1’ in the denominator 
becomes important. 

dn

dp
=

8 𝜋

ℎ3  
𝑝2

ⅇ 𝜀 𝑝 −𝜇chem kT + 1
 

dn

dε𝐾
=

8 𝜋

ℎ3 𝑐3  𝜀𝐾
2 + 2 𝜀𝐾 𝑚0 𝑐

2 
𝜀𝐾 + 𝑚0 𝑐

2

ⅇ
𝜀𝐾+𝑚0 𝑐2−𝜇chem

kT + 1

 



How to define “degenerate”? 

dn

dε𝐾
=

8 𝜋

ℎ3 𝑐3
 𝜀𝐾

2 + 2 𝜀𝐾 𝑚0 𝑐
2 

𝜀𝐾 + 𝑚0 𝑐
2

ⅇ
𝜀𝐾+𝑚0 𝑐2−𝜇chem

kT + 1

 

In our introduction to degenerate gases, we noted that for dense fermions, the +1 
must be considered.  
It should then be obvious that the exponential term can’t be too large. 

To be more precise, we can define a “Fermi Temperature” 𝑇𝐹 =
𝜀𝐹

k
=

𝜇chem−𝑚0 𝑐
2

𝑘
 

 

The exponential then becomes ⅇ
𝜀𝐾−𝜀𝐹

kT . 
 
Now, we see that it is clear that there are two cases: 
 
1. 𝜀𝐾 ≫ 𝜀𝐹：The exponential term is large, we have a non-degenerate gas. 
 
2. 𝜀𝐾 ≪ 𝜀𝐹：The exponential term is small. A degenerate gas. 



Pressure and Energy 
Evaluating the pressure and energy, we get: 
 

𝑝 =
8 𝜋

3
 

𝑚0 𝑐

ℎ

3
 𝑚0 𝑐

2 𝑃 𝑥   𝜀 =
8 𝜋

3
 

𝑚0 𝑐

ℎ

3
 𝑚0 𝑐

2 𝐸 𝑥   𝑥 ≡
𝜀𝐹

𝑚0 𝑐2 

 
With the normalized energy and pressure functions: 
 

𝑃 𝑥 = 𝑥 2 𝑥2 − 3  𝑥2 + 1 + 3 sinh−1 𝑥 

𝐸 𝑥 = 3 𝑥 2 𝑥2 + 1  𝑥2 + 1 − 8 𝑥3 − 3 sinh−1 𝑥 

Relativistic 
gas 

n=3 

Polytropic index  

Non-rel 
gas 

n=1.5 

Non-rel 
gas 

𝛤 =
5

3
 

Relativistic 
gas 

𝛤 =
4

3
 



Some handy numbers 
Handy expressions for the pressure for a degenerate electron gas are, for the non- 
relativistic and relativistic cases, 

and for a degenerate neutron gas 

with ρ and μ in cgs units, and the standard ε = p/(Γ − 1) giving the internal 
energy density for each. Note the similarity between the two different 
degenerate gases in the relativistic cases. 

The boundaries between the non-relativistic and relativistic cases are 
approximately  
1.9 × 106 𝑔 · cm−3  for the degenerate electron gas and  
1.15 × 1016 𝑔 · cm−3  for degenerate neutrons. 



𝜀𝐹
kT

= 10 



Rel, Non-Rel ⅇ− 
1.9 × 106 𝑔 · cm−3 

Rel, Non-Rel  n 
1.15 × 1016 𝑔 · cm−3  

Radiation Pressure 

Non-Rel 
Degenerate 
electron 

Relativistic 
Degenerate 
electron 

Non-Rel 
Degenerate 
neutron 

Usually happens in unstable stars 
(Collapsing) 



Nonthermal gases (Ch 9.3.2) 

This is usually called non-thermal since particles that emit this radiation must have 
energies way higher than the thermal value ‘kT’. Lorentz factors can go even up to 106 
or higher. 

Possibly due to 
Fermi acceleration 
in the universe, 
many sources 
exhibit a powerlaw 
spectrum in the 
high energy end. 
The Crab Nebula is 
given as an 
example to the left. 
(Radio lobes, jets 
often also show 
this behavior) 



Power law spectra 
For such cases, it is common to assume that the particles distribute in energy as a 
power law shape: 

dn

dε𝐾
= 𝑛 

1 − 𝛽

𝜀𝐾,Max
1−𝛽

− 𝜀𝐾,min
1−𝛽

 𝜀𝐾
−𝛽

 

 
Which energies 𝜀𝐾,min < 𝜀𝐾 < 𝜀𝐾,Max 

normalization 

If β > 1, then the distribution function is 
steep and dominated by low-energy 
particles, perhaps even a very low-
energy thermal distribution. On the other 
hand,  
 
If β < 1, then the distribution is shallow, 
dominated by the high-energy end, and 
must be cut off more steeply beyond 
𝜀𝐾,Max. 

β=0.5 

β=1 

β=2 



Energy and Pressure for non-
thermal particles 

Evaluating the energy and pressure for non-thermal particles, we find that 
 

𝜀 = 3 𝑝 = 𝑛 
1 − 𝛽

2 − 𝛽
 

𝜀𝐾,Max
2−𝛽

− 𝜀𝐾,min
2−𝛽

𝜀𝐾,Max
1−𝛽

− 𝜀𝐾,min
1−𝛽

 

 

This gives a Adiabatic Index 𝛤 =
4

3
, same as for highly relativistic particles. (This 

should be trivial since by origin, they are highly relativistic) 



Part II Equation of state  
 

Conductivity and Viscosity (Ch9.3.3~9.3.7) 



Thermal Conductivity (Ch9.3.3) 



Recall From last week 
With the knowledge that 𝑄 𝑔 = −𝐾𝑐 𝛻

 𝑇 and that 

it corresponds to the 𝑇i0and 𝑇0j terms, we could 
guess that in locally flat space-time, the 
components would read as  

𝑇αβ
Conduction

=

0 𝑄𝑔
𝑥 𝑄𝑔

𝑦
𝑄𝑔

𝑧

𝑄𝑔
𝑥 0 0 0

𝑄𝑔
𝑦

0 0 0

𝑄𝑔
𝑧 0 0 0

 

However, we can see that 𝑄𝑔 is actually still a 3-vector and the above form is simply 

from an educated guess. Therefore we need to first rewrite 𝑄𝑔 into a 4-vector 𝑄𝑔
𝛼 .  

We find that it can be expressed as  
 

𝑄𝑔
𝛼 = −𝐾𝑐 𝑐

2 𝑃αβ 𝛻𝛽𝑇 + 𝑇 𝑈𝛽 𝛻𝛽𝑈𝛼  with 𝑃αβ =
1

𝑐2  𝑈𝛼 𝑈𝛽 + 𝑔αβ 

Or, 𝑄 𝑔 = −𝐾𝑐 𝑐2 𝑃
 

· 𝛻 𝑇 + 𝑇 𝑈 · 𝛻 𝑈  with 𝑃
 

=
1

𝑐2  𝑈 ⊗ 𝑈 + 𝑔 
−1

 



A simple kinetic picture 

http://en.wikipedia.org/wiki/Thermal_conductivity 

ΔT 

Consider a picture like the one on the left. 
 
If we consider that a pair of particles are 
exchanged, then there will be a net energy 
transfer from top to bottom. 

Therefore we can write heat flux as  
(particle number flux)×(energy difference) 

For a thermal gas, the energy that is 
required to heat it by ΔT is Δ𝐸 = 𝐶𝑉ΔT. 

In terms of differential quantities, we can write ΔT = ℓ𝑐 
dT

dz
 

Putting it all together, we get Q ≈ −
1

3
 𝑛 𝑉𝑐  𝐶𝑉 ℓ𝑐 

dT

dz
.  

Comparing with 𝑄 = −𝐾𝑐 𝛻
 𝑇, we find the diffusion coefficient 𝐾𝑐 ≈ −

1

3
 (𝐶𝑉𝑛) 𝑉𝑐   ℓ𝑐 

Q1.Why is ℓ𝑐 the mean free path? 
Q2.Why is it 𝐶𝑉? 

http://en.wikipedia.org/wiki/Thermal_conductivity


Thermal Conductivity 
As we have just found, the thermal condutivity is equal to 𝐾𝑐 ≈

1

3
 (𝑛𝐶𝑉) 𝑉𝑐   ℓ𝑐 

For thermal conduction in a electron-ion plasma, it would be sufficient to only 
consider electrons since they are fast. 
 

For a classical thermal gas, 𝑛𝐶𝑉 =
3

2
 𝑛𝑒 𝑘 

 

The rms velocity is 𝑉𝑐 =
3 kT

𝑚𝑒
 

 
 

The mean free path, by definition 
is the inverse of the density 
multiplied by the collision cross-

section. ℓ𝑐 =
1

𝑛𝑒 𝜎𝑐
 



Determining the mean free path 

The mean free path ℓ𝑐 =
1

𝑛𝑒 𝜎𝑐
 The easiest was to estimate the collision cross-

section is to give it a radius, thus, 𝜎𝑐 = πr𝑐
2 

Therefore the actual problem is to find some reasonable radius to apply into the 
formula. (This was actually already discussed in Ch1 of plasma Astrophys.) 

http://en.wikipedia.org/wiki/Coulomb_collis
ion 

My own idea is like this: Since the mean free path is the distance of which a 
particle travels before crashing into something and thereby changing direction of 
motion, the cross-section associated with it would be defined by some radius 
within which the injected particle would be deflected by a large angle. (red oval 
below) 

http://en.wikipedia.org/wiki/Coulomb_collision
http://en.wikipedia.org/wiki/Coulomb_collision


Determining the mean free path 
For coulomb collisions, if the particle looses 
most of its initial kinetic energy to the 
coulomb field, then it now no longer knows 
which direction it came from. 

The radial coulomb field then changes its 
direction according to how close the particle is. 

Thus, we can approximate the radius by equating the thermal kinetic energy and 
the Coulomb potential energy. 

𝜀𝐶 =
ⅇ2

𝑟𝑐
= kT = 𝜀𝐾  

 
 
This then give us a classical Coulomb collision radius 

𝑟𝑐 =
ⅇ2

kT
 



Putting it all together 
The thermal conductivity 𝐾𝑐 ≈

1

3
 (𝐶𝑉𝑛) 𝑉𝑐   ℓ𝑐 

𝐶𝑉 =
3

2
 𝑛𝑒 𝑘 𝑉𝑐 =

3 kT

𝑚𝑒
 ℓ𝑐 =

1

𝑛𝑒 𝜎𝑐
 𝜎𝑐 = πr𝑐

2 𝑟𝑐 =
ⅇ2

kT
 

𝐾𝑐 ≈
𝑘

2 𝜋 ⅇ4  
3

𝑚𝑒
 kT

5
2 ≈ 5.38 × 1018 erg  cm−1 𝑠−1 𝐾−1 

𝑇

4.0 × 109 𝐾

5
2

 

103 104 102 105 

0.1keV 
accretion 

disk 

Inner disk > 10keV 



How important is it? 

Heat  conduction flux

Advection  energy  flux
=

𝑄𝑔

𝑉 𝜀
≈

𝑉𝑐
𝑉

 
ℓ𝑐

𝑅
 

𝑅 is the typical length scale of  system. For accreting BH, it is ~ 10 − 100  𝑟𝑔. 

Let’s now estimate the importance of heat flux relative to energy flux by advection 

from neighboring fluid elements. (Advection is from the 𝑣 · 𝛻  term) 

Case1: Main Sequence stars: 
 Since MS stars are in approximately in hydrostatic equilibrium, the velocity of 
 fluid elements V will be much smaller than  𝑉𝑐  the thermal velocity. 
 Thus, in MS stars, heat conduction is more important. 
 
Case2: Accreting BHs: 

 In such cases, V, the infall velocity, can reach the sound speed 𝑐𝑠 =
𝑝

𝜌
≈

kT

𝑚𝑝
. 

  
𝑄𝑔

𝑉 𝜀
≈

𝑚𝑝

𝑚𝑒
 

kT 2

𝜋 𝑒4 𝑛𝑒 𝑅
= 1.0

𝑛𝑒

5.3×1018 cm−3

−1
 

𝑀

10 𝑀⊙

−1

 
𝑅

10 𝑟𝑔

−1

 
𝑇

4.×109 𝐾

2
 

 

Becomes close 



𝑄𝑔

𝑉 𝜀
≈

𝑚𝑝

𝑚𝑒
 

kT 2

𝜋 ⅇ4 𝑛𝑒  𝑅
= 1.0

𝑛𝑒

5.3 × 1018 cm−3

−1

 
𝑀

10 𝑀⊙

−1

 
𝑅

10 𝑟𝑔

−1

 
𝑇

4.× 109 𝐾

2

 

還沒做完XD 



Particle Viscosity (Ch9.3.4) 



Recall From last week 
Since viscosity works to transport momentum, it 
should manifest itself in the momentum flux term of 
the tensor. 

I’m not so familiar with this part so below mainly follows the textbook. 

𝑇αβ
Viscosity = −2 𝜂𝑣,𝑔 𝛴

αβ − 𝜁𝑣,𝑔 𝛩 𝑃αβ 

Projection tensor 𝑃αβ =
1

𝑐2  𝑈𝛼 𝑈𝛽 + 𝑔αβ 

Shear tensor 𝛴αβ ≡
1

2
[𝑃αγ 𝛻𝛾𝑈

𝛽 + 𝑃βγ 𝛻𝛾𝑈
𝛼 −

1

3
 𝛩 𝑃αβ 

Compression rate 𝛩 ≡ 𝛻𝛾𝑈
𝛾 

Shear viscosity coefficient 
𝜂𝑣,𝑔 = 𝜂𝑣,𝑔 𝜌, 𝑇   

Bulk viscosity coefficient  
𝜁𝑣,𝑔 = 𝜁𝑣,𝑔 𝜌, 𝑇  

shear bulk 



A simple kinetic picture 

ΔP 

Consider a picture like the one on the left. 
 
If we consider that a pair of particles are 
exchanged, then there will be a net 
momentum transfer from top to bottom. 

Therefore we can write momentum flux as  
(particle number flux)×(momentum difference) 

In terms of differential quantities, we can write ΔP = ℓ𝑣𝑚
dV

dz
 

Putting it all together, we get 𝐽𝑃 ≈ 𝜌 𝑉𝑣   ℓ𝑣 
dV

dz
.  

 

Comparing with 𝑇αβ
Viscosity = −2 𝜂𝑣,𝑔 𝛴

αβ − 𝜁𝑣,𝑔 𝛩 𝑃αβ, we find the viscosity coefficients 

𝜂𝑣,𝑔 ≈ 𝜁𝑣,𝑔 ≈ 𝜌 𝑉𝑣   ℓ𝑣 

10.1098/rstl.1866.0013 

http://dx.doi.org/10.1098/rstl.1866.0013


The coefficients of viscosity 

The coefficients of viscosity 𝜂𝑣,𝑔 ≈ 𝜁𝑣,𝑔 ≈ 𝜌 𝑉𝑣   ℓ𝑣 look very familiar to the thermal 

conductivity 𝐾𝑐 ≈
1

3
 (𝐶𝑉𝑛) 𝑉𝑐   ℓ𝑐. 

Typo in textbook?  

Thus, for ⅇ− 𝑝+ plasma, 
 

𝜂𝑣,𝑔 ≈
1

πe4  3 𝑚𝑝 kT
5
2 ≈ 3.× 109 erg · 𝑠 · cm−3 

𝑇

4.× 109 𝐾

5
2

 

However, in case of momentum, for an electron-proton 
plasma, the momentum is mainly carried by the protons. 
Thus, both 𝑉𝑣   and ℓ𝑣 have to use values for protons. 

ℓ𝑣 =
1

𝑛𝑝 𝜎𝑐
=

𝑚𝑝 kT 2

𝜌 𝜋 𝑒4   



How important is it? 

 
𝑇αβ

Visc

𝑝
≈

𝜂𝑣,𝑔 𝑉𝑣 𝑅 

nkT
≈ 3 

ℓ𝑣

𝑅
= 3 

kT 2

πe4 nR
 

  = 1.0
𝑛

3.7×1017 cm−3

−1
 

𝑀

10 𝑀⊙

−1

 
𝑅

10 𝑟𝑔

−1

 
𝑇

4.×109 𝐾

2
 

 
𝑄𝑔

𝑉 𝜀
≈

𝑚𝑝

𝑚𝑒
 

kT 2

𝜋 𝑒4 𝑛𝑒 𝑅
= 1.0

𝑛𝑒

5.3×1018 cm−3

−1
 

𝑀

10 𝑀⊙

−1

 
𝑅

10 𝑟𝑔

−1

 
𝑇

4.×109 𝐾

2
 

Comparing the contribution of viscosity to pressure, we get the following equation 

There is an interesting thing here, when we compare with the ratio of heat flux to 
advection energy transfer, we find that for viscosity to dominate pressure requires 
even lower pressure than for heat conduction to dominate advection! 

Nevertheless, in low accretion rate situations, it is possible that particle viscosity 
may be important as well. 



Turbulent Viscosity (Ch9.3.5) 



Turbulence is the random, chaotic, motion that often occurs in in fluids on scales 
much smaller than the overall system size, but much larger than the distance 
between independent fluid particles or even between fluid elements. The 
phenomenon usually develops in fluids undergoing shear flow, unless the 
microscopic viscosity is strong enough to damp out any growing chaotic motions 
and turn them into heat. It also can occur in fluids that have a weak, but non-zero, 
magnetic field. Turbulence actually is produced by fluid motions and is not really a 
separate physical microscopic process. However, the motions are so complex, 
compared to regular laminar flow that statistical methods have been developed to 
treat chaotic fluid motions, just as such methods were developed to handle the 
mechanics of multiple particles in motion in the first place. 

If the size scale of the turbulent eddies ℓt is much smaller than the overall size 
of the system, then one can use the turbulent diffusion approximation to define a 
turbulent viscosity  

ηv,t ≈ ζv,t ≈ ρ Vt  ℓt 

 
where  Vt  is the RMS velocity of the chaotic motions in the eddies. 

呵呵呵… 看不懂啦XD 



 In the early 1970s the nature of turbulent flow in black hole accretion flows was 
largely unknown. So early investigators [351, 352] assumed that the RMS turbulent 
velocity was a fraction of the sound speed 

𝑉𝑡 ≈ αc𝑠 
where the free parameter α ≤ 1. This “alpha model” of turbulence was quite 
successful in the early days of black hole accretion studies. See Chapter 12. 
 
In addition to the obvious issues associated with choosing a diffusion  approximation, 
treating turbulence as a viscous process has some other assumptions associated with 
it. Recall (Section 9.2.1) that having a viscosity implies that viscous dissipation of the 
shear exists (viscous heating). This is because the viscous part of the stress-energy 
tensor does not have its own energy density (ε t is missing). In reality, however, 
turbulence does have an energy density, a pressure also, and heat flow as well, not 
just viscous-like properties. All of this physics is missing in this treatment, along with 
a model for how to convert turbulent energy into heat. Instead, the simple viscous 
approximation assumes that all mechanical energy lost due to viscosity immediately 
is converted into heat (equation (9.16)). While this works rather well in accretion 
models, it still should be remembered that turbulence can be much more complex 
than a simple ad hoc viscosity. 

呵呵呵… 看不懂啦XD 



Radiative Opacity (Ch9.3.6) 



Recall from last week 
In many situations that we will study in the next few chapters, the fluid will be 
optically thick to radiation and both will be in thermodynamic equilibrium at 
the same temperature Tr = Tg ≡ T. 

In this case the photon gas will contribute to the fluid plasma pressure, energy 
density, heat conduction, and viscosity and will add stress-energy terms 
similar to those discussed previously for fluids. 

𝜌 = 𝜌𝑔  Total density of fluid (photons don’t contribute to this) 

𝑝 = 𝑝𝑔 + 𝑝𝑟  Total pressure 

𝜀 = 𝜀𝑔 + 𝜀𝑟   Total energy density 

𝑄𝛼 = 𝑄𝑔
𝛼 + 𝑄𝑟

𝛼  Total heat conduction vector 

𝜂𝑣 = 𝜂𝑣,𝑔 + 𝜂𝑣,𝑟 Total coefficient of shear viscosity 

𝜁𝑣 = 𝜁𝑣,𝑔 + 𝜁𝑣,𝑟 Total coefficient of bulk viscosity 

𝑇αβ
gas

=

ρc2 + 𝜀𝑔 𝑄𝑔
𝑥 𝑄𝑔

𝑦
𝑄𝑔

𝑧

𝑄𝑔
𝑥 −2 𝜂𝑣,𝑔 𝛴

xx − 𝜁𝑣,𝑔 𝛩 + 𝑝𝑔 −2 𝜂𝑣,𝑔 𝛴
xy −2 𝜂𝑣,𝑔 𝛴

xz

𝑄𝑔
𝑦

−2 𝜂𝑣,𝑔 𝛴
yx −2 𝜂𝑣,𝑔 𝛴

yy − 𝜁𝑣,𝑔 𝛩 + 𝑝𝑔 −2 𝜂𝑣,𝑔 𝛴
yz

𝑄𝑔
𝑧 −2 𝜂𝑣,𝑔 𝛴

zx −2 𝜂𝑣,𝑔 𝛴
zy −2 𝜂𝑣,𝑔 𝛴

zz − 𝜁𝑣,𝑔 𝛩 + 𝑝𝑔

 



Conduction by radiation 

Last week, we mentioned that for radiation, we can basically copy the whole set of 
stress-energy tensor, therefore, for the heat conduction term, 𝑄𝛼 = 𝑄𝑔

𝛼 + 𝑄𝑟
𝛼. 

 
Thus, we can determine the total conductivity 𝐾 = 𝐾𝑐 + 𝐾𝑟. 
 

Then, by analogy of 𝐾𝑐 ≈
1

3
 (𝐶𝑉𝑛) 𝑉𝑐   ℓ𝑐,  

 

𝐾𝑟 =
1

3
 nC𝑣  𝑉𝑟  ℓ𝑟 =

1

3
 4 aT3  𝑐 ℓ𝑟 =

4 acT3

3
 
1

𝜌 𝜅
_

𝑅
 

 
1

𝜌 𝜅
_
𝑅
=

1

𝛼
= ℓ𝑟, 𝛼 is the absorption coefficient. From illustration below, we can see that 

it should be inverse proportional to the mean free path of photons. 

For details, please see Radiative Processes in Astrophysics by Rybicki & Lightman 

Incident Intensity 𝐼𝜈 0  Output Intensity 𝐼𝜈 𝑥 = ⅇ−αL 

L 



Frequency dependent Opacity 

Using the relations ℓ𝑟 =
1

𝛼
=

1

𝜌 𝜅
_
𝑅 𝜈

=
1

𝑛 𝜎𝑟 𝜈
 

We can rewrite the opacity in terms of scattering/absorption coefficient 
 

𝜅
_

𝑅 𝜈 =
𝑛 𝜎𝑟 𝜈

𝜌
= 𝜎𝑟 𝜈  

𝑁𝐴

𝜇
 

 
There are many ways to scatter/absorb photons. Therefore in the following we will 
consider 
 
a. Electron scattering 
b. Free-Free and Bound-Free Absorption 



Electron scattering (Ch9.3.6.1) 



General considerations 

Using the relation 𝜅
_

𝑅 𝜈 =
𝑛 𝜎𝑟 𝜈

𝜌
= 𝜎𝑟 𝜈  

𝑁𝐴

𝜇
 and applying it to electron scattering, we 

find 𝜅
_

𝑅 𝜈 = 𝜎𝐾𝑁 𝜈  
𝑁𝐴(1+𝑋)

2
 

Considering scattering between photons and electrons, we recall from high school that 
the most general case for scattering is Compton scattering.  

In such a case, the cross section 
we need to consider is the Klein-
Nishina cross-section 𝜎KN. 

𝜎KN 𝜈 =
3

4
 𝜎𝑇 

2 1 + 𝜃𝜈

𝜃𝜈
2 [

1 + 𝜃𝜈

1 + 2𝜃𝜈
−

ℓn 1 + 2 𝜃𝜈

2 𝜃𝜈
 +

ℓn 1 + 2 𝜃𝜈

2 𝜃𝜈
−

1 + 3 𝜃𝜈

1 + 2 𝜃𝜈
2  

𝜃𝜈 ≡
hν

𝑚𝑒 𝑐2 ≈
𝑇

5.9×109 𝐾
 is the energy of the photon in electron rest mass units 

𝜎𝑇 =
8 𝜋

3
 

𝑒2

𝑚𝑒 𝑐
2

2

= 6.65246 × 10−25 cm2 is the Thomson cross-section 



The Klein-Nishina Cross-Section 
𝜎KN 𝜈 =

3

4
 𝜎𝑇 

2 1 + 𝜃𝜈

𝜃𝜈
2 [

1 + 𝜃𝜈

1 + 2𝜃𝜈
−

ℓn 1 + 2 𝜃𝜈

2 𝜃𝜈
 +

ℓn 1 + 2 𝜃𝜈

2 𝜃𝜈
−

1 + 3 𝜃𝜈

1 + 2 𝜃𝜈
2

 

In this region, 
the cross-section 
essentially is the 
classical one 
since photons 
have low energy. 

104 < 𝑇 < 107 107 < 𝑇 < 1011 T ≫ 1011 

The cross-section 
is very small, 
other forms of 
opacity dominate, 

Compton Scattering 
region. 
 
On the other hand, if 
the electrons are very 
energetic, inverse 
Compton can also 
happen. 

𝜅 es = 

0.2 1 + 𝑋  cm2 𝑔−1 ≈
0.34cm2 𝑔−1 for solar 
abundance 



Absorption processes (Ch9.3.6.2) 



Free-Free Absorption – 
 an Introduction 

If a photon and an unbound 
electron collide near a positively 
charged ion, it is possible for the 
photon to be absorbed, rather 
than simply scattered. This 
process is called free–free 
absorption. The electron’s kinetic 
energy increases, and, when it 
eventually collides with another 
electron or ion, that extra energy 
will heat the plasma. 

Only much later may the inverse process (Bremsstrahlung emission), Section 9.4.1, or 
some other process, emit a photon again and convert that absorbed energy back into 
radiation. Photo-absorption and photo-emission, therefore, are treated as separate 
heating and cooling processes, rather than two parts of a single scattering. 



Bound-Free Absorption – 
 an Introduction 

A similar effect occurs if 
the electron is bound to a 
nucleus, but the incoming 
photon has enough energy 
to eject the electron from 
that nucleus and ionize it. 
The photon again is 
absorbed in the event, so 
this process is called 
bound–free absorption.  

The inverse process, recombination emission, also occurs separately from bound–free 
absorption, and need not involve the electron and ion that participated in the original 
ionization. 



The opacities 

Because free-free and bound-free are very important in stellar structure, their 
Rosseland means have been worked out and well known. 

𝜅
−

𝑅,ff = 7.36 × 1022 cm2 𝑔−1 𝑋 + 𝑌  𝜌 𝑇−7 2  𝑔ff

−
𝜇𝑒  

 
 

𝜅
−

𝑅,bf = 8.68 × 1025 cm2 𝑔−1 𝑓 𝑇  𝑍 𝜌 𝑇−7 2  𝑔bf

−
𝜇𝑒  

 
 

𝑔ff

−
 and 𝑔bf

−
 are called the Gaunt factors which are generally a factor of unity. 

 
 f(T) is the fraction of heavy elements that are not ionized 𝑓 𝑇 → 0  𝑎𝑠 𝑇 → ∞ 
 

Mainly dominated by H, and He 

Mainly dominated by heavy elements 



Total Opacity 

Again, I am too lazy to 
type these equations… 



Radiative Heat Transport v.s. 
Thermal Conduction (Ch9.3.7) 

Now that we have discussed both thermal conduction and radiative heat 
transport, it would be interesting to see in what cases which dominate. 
 
By taking the ratio 

 
𝑄𝑔

𝑄𝑟
=

𝐾𝑐

𝐾𝑟
=

4 cT3

𝜕𝜀

𝜕𝑇
 𝑉𝑐  ℓ𝑐 𝜅

–
𝑅 𝜌

 



Radiative heat 
transport 
dominated 

Thermal 
Conduction 
Dominated 


